Boundary treatments in non-equilibrium Green's function (NEGF) methods for quantum transport in nano-MOSFETs

نویسندگان

  • Haiyan Jiang
  • Sihong Shao
  • Wei Cai
  • Pingwen Zhang
چکیده

Non-equilibrium Green’s function (NEGF) is a general method for modeling non-equilibrium quantum transport in open mesoscopic systems with many body scattering effects. In this paper, we present a unified treatment of quantum device boundaries in the framework of NEGF with both finite difference and finite element discretizations. Boundary treatments for both types of numerical methods, and the resulting self-energy R for the NEGF formulism, representing the dissipative effects of device contacts on the transport, are derived using auxiliary Green’s functions for the exterior of the quantum devices. Numerical results with both discretization schemes for an one-dimensional nano-device and a 29 nm double gated MOSFET are provided to demonstrate the accuracy and flexibility of the proposed boundary treatments. 2008 Published by Elsevier Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of Silicon Wafer Orientation on the Performance of Metal Source/Drain MOSFET in Nanoscale Regime: a Numerical Study

A comprehensive study of Schottky barrier MOSFET (SBMOSFET) scaling issue is performed to determine the role of wafer orientation and structural parameters on the performance of this device within Non-equilibrium Green's Function formalism. Quantum confinement increases the effective Schottky barrier height (SBH). (100) orientation provides lower effective Schottky barrier height in compa...

متن کامل

Modeling and simulation of electronic structure, material interface and random doping in nano-electronic devices

The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computation...

متن کامل

Quantum Transport with Spin Dephasing: A Nonequilibrium Green's Function Approach

A quantum transport model incorporating spin scattering processes is presented using the non-equilibrium Green's function (NEGF) formalism within the self-consistent Born approximation. This model offers a unified approach by capturing the spin-flip scattering and the quantum effects simultaneously. A numerical implementation of the model is illustrated for magnetic tunnel junction devices with...

متن کامل

Nanoscale Device Modeling : From Wavefunctions to Green's Functions

The non-equilibrium Green's function (NEGF) formalism provides a sound conceptual basis for the development of atomic level quantum mechanical simulators that will be needed for nanoscale MOS devices of the future. However, this formalism is based on concepts that are unfamiliar to most device physicists and as such remains relatively obscure. In this paper we try to achieve two objectives : (1...

متن کامل

Nanoscale Mosfets: Physics, Simulation and Design

This thesis discusses device physics, modeling and design issues of nanoscale transistors at the quantum level. The principle topics addressed in this report are 1) an implementation of appropriate physics and methodology in device modeling, 2) development of a new TCAD (technology computer aided design) tool for quantum level device simulation, 3) examination and assessment of new features of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 227  شماره 

صفحات  -

تاریخ انتشار 2008